$第一個(gè)數(shù)是\dfrac{1}{3},用\dfrac{1}{1}\times \dfrac{{\displaystyle 1}}{{\displaystyle 3}}表示;$
$第二個(gè)數(shù)是\dfrac{1}{6},用\dfrac{1}{2}\times \dfrac{1}{3}表示;$
$第三個(gè)數(shù)是\dfrac{1}{9},用\dfrac{1}{3}\times \dfrac{1}{3}表示;$
$第四個(gè)數(shù)是\dfrac{1}{12},用\dfrac{1}{4}\times \dfrac{1}{3}表示;$
$由此可知,第幾個(gè)數(shù)就用幾分之一乘三分之一,$ $第n個(gè)數(shù),就是\left(\dfrac{1}{n}\times \dfrac{1}{3}\right)$
$第五個(gè)數(shù)是:\dfrac{1}{5}\times \dfrac{1}{3}=\dfrac{1}{15}$
$第六個(gè)數(shù)是:\dfrac{1}{6}\times \dfrac{1}{3}=\dfrac{1}{18}$
$第七個(gè)數(shù)是:\dfrac{1}{7}\times \dfrac{1}{3}=\dfrac{1}{21}$
$故答案為:\dfrac{1}{15};\dfrac{1}{18};\dfrac{1}{21}$