證明:?$(1)$?∵四邊形?$ABCD$?是正方形,四邊形?$EFGH$?是菱形
∴?$AD=CD,$??$ED=GD,$??$∠ADB=∠CDB,$??$∠EHB=∠GHB$?
∴?$∠ADB-∠EHB=∠CDB-∠GHB,$?
即?$∠ADE=∠CDG$?
在?$△ADE$?和?$△CDG $?中,
?$ \begin{cases}{AD=CD }\\{∠ADE=∠CDG} \\{ED=GD} \end{cases}$?
∴?$△ADE≌△CDG(\mathrm {SAS})$?
?$ (2)$?過(guò)點(diǎn)?$E$?作?$EQ⊥DF $?于點(diǎn)?$Q,$?則?$∠EQB=90° $?
∵四邊形?$ABCD$?是正方形,
∴?$∠A=90°,$??$AD=AB=AE+BE=2+2=4,$?
?$ ∠EBQ=∠CBD=45°,$?
∴?$∠QEB=45°=∠EBQ.$?
∴?$EQ=BQ$?
∵?$BE=2$?
∴?$2EQ^2=2^2$?
∴?$EQ=BQ=\sqrt {^2}($?負(fù)值舍去)
在?$Rt△DAE$?中,由勾股定理得?$DE=\sqrt {AD^2+AE^2}=\sqrt {4^2+2^2}=2\sqrt 5$?
∵四邊形?$EFGH$?是菱形
∴?$EF=DE=2\sqrt 5$?
∴?$QF=\sqrt {EF^2-EQ^2}=\sqrt {(2\sqrt 5)^2-(\sqrt {^2})^2}=3\sqrt 2$?
∴?$BF=QF-QB=3\sqrt 2-\sqrt 2=2\sqrt 2.$?