解:∵?$x^2+2 y+\sqrt 2 y=17-4 \sqrt 2$?
∴?$(x^2+2y-17)+\sqrt 2(y+4)=0 $?
∵?$x 、$??$ y $?都是有理數(shù)
∴?$x^2+ 2 y-17 $?與?$ y+4 $?也是有理數(shù)
∴?$\begin{cases}{x^2+2y-17=0}\\{y+4=0}\end{cases},$?解得?$\begin{cases}{x=±5}\\{y=-4}\end{cases}.$?
∵?$\sqrt {x-y}$?有意義的條件是?$ x≥y , $?
∴?$x=5,$??$y=-4$?
∴?$\sqrt {x-y}=3.$?