解:?$(1)$?設(shè)爆炸前?$y$?與?$x$?的函數(shù)表達式為?$y= k_1x +b(k_1≠0),$?
由圖可知,該函數(shù)圖像過點?$(0,$??$4)、$??$(7,$??$46),$?
∴?$\begin{cases}{b=4,}\\{7k_1+b=46,}\end{cases}$?解得?$\begin{cases}{k_1=6,}\\{b=4.}\end{cases}$?
∴爆炸前?$y$?與?$x$?的函數(shù)表達式為?$y=6x+4(0≤x< 7).$?
設(shè)爆炸后?$y$?與?$x$?的函數(shù)表達式為?$y=\frac {k_2}x (k_2≠0),$?
由圖可知,該函數(shù)圖像過點?$(7,$??$46),$?
∴?$ k_2=322. $?
∴ 爆炸后?$y$?與?$x$?的函數(shù)表達式為?$y=\frac {322}x (x≥7).$?
?$(2)$?在?$y=6x+4$?中,令?$y=34,$?即?$6x+4=34,$?
解得?$x=5,$?
?$7-5=2(\mathrm h). $?
∴ 撤離的最小速度為?$3÷2=1.5(\ \mathrm {km/h}).$?
?$(3)$?在?$y=\frac {322}x$?中,令?$y=4,$?即?$\frac {322}x=4,$?
解得?$x=80.5.$?
∴?$80.5-7=73.5(\mathrm h),$?即礦工至少在爆炸后?$73.5 \mathrm h$?才能下井.