證明:?$(1) $?∵ 四邊形?$ABCD$?為菱形,
∴?$ ∠B=∠D,$??$AB=BC=CD=DA.$?
又 ∵?$ CE=CF,$?
∴?$ BE=DF.$?
在?$△ABE$?和?$△ADF $?中
?$\begin{cases}{AB=AD,}\\{∠B=∠D,}\\{BE=DF,}\end{cases}$?
∴?$ △ABE≌△ADF(\mathrm {SAS}). $?
∴?$ AE=AF $?
?$(2)$?如圖,連接?$AC. $?
∵ 四邊形?$ABCD$?為菱形,
∴?$ ∠B=∠D=60°,$??$AB=BC=CD=DA. $?
∴?$ △ABC$?與?$△CDA$?為等邊三角形.
∴?$ AB=AC,$??$∠B=∠ACD=∠BAC=60°. $?
∵?$ ∠EAF=60°,$?
∴?$ ∠BAE=∠CAF.$?
在?$△ABE$?和?$△ACF $?中,
?$\begin{cases}{∠BAE=∠CAF,}\\{AB=AC,}\\{∠B=∠ACF,}\end{cases}$?
∴?$ △ABE≌△ACF(\mathrm {ASA}). $?
∴?$ AE=AF. $?
∵?$ ∠EAF=60°,$?
∴?$ △EAF$?為等邊三角形.
∴?$ ∠AEF=60°. $?
∵?$ ∠AEC=∠B+∠BAE=∠AEF+∠CEF.$?
∴?$ 60°+20°=60°+∠CEF. $?
∴?$ ∠CEF=20°.$?