解:?$(1)$?∵?$△PQC$?的面積與四邊形?$PABQ$?的面積相等
∴?$S_{△ABC}=2S_{△PQC}$?
∵?$PQ//AB$?
∴?$△ABC∽△PQC$?
∴?$\frac {CP}{AC}=\frac {\sqrt 2}2$?
∵?$AC=4$?
∴?$CP=2\sqrt 2$?
?$(2)$?∵?$△ABC∽△PQC$?
∴?$\frac {CP}{CQ}=\frac {AC}{BC}=\frac 43$?
設(shè)?$CP=4x,$?則?$CQ=3x,$??$PA=4-4x,$??$QB=3-3x$?
∵?$△PQC$?的周長與四邊形?$PABQ$?的周長相等
∴?$CP+CQ=PA+QB+AB$?
∴?$4x+3x=(4-4x)+(3-3x)+5$?
解得?$x=\frac 67$?
∴?$CP=4x=\frac {24}{7}$?
?$(3)$?分兩種情況
①過點(diǎn)?$P$?作?$PM⊥AB,$?垂足為點(diǎn)?$M,$?要使?$△PQM$?為等腰直角三角形,則?$PM=PQ$?
∵?$△PQC∽△ABC,$??$PM=PQ$?
∴?$\frac {PQ}5=\frac {\frac {12}{5}-PM}{\frac {12}{5}}=\frac {\frac {12}{5}-PQ}{\frac {12}{5}}$?
∴?$PQ=\frac {60}{37}$?
②當(dāng)?$∠PMQ=90°$?時(shí),要使?$△PQM$?為等腰直角三角形,則有?$\frac {PQ}5=\frac {\frac {12}{5}-\frac 12PQ}{\frac {12}{5}}$?
解得?$PQ=\frac {120}{49}$?
綜上所述,?$PQ$?的長為?$\frac {60}{37}$?或?$\frac {120}{49}$?