解:?$(2)$?將?$P (\frac {\sqrt 3}{2},$??$\frac {3}{2} )、$??$A(\sqrt{3},$??$0)$?兩點(diǎn)的坐標(biāo)代入?$y=- \frac {4}{3} x^2+ bx+c$?中
可得?$\begin{cases}{-\dfrac 43×\dfrac 34+\dfrac {\sqrt 3}2b+c=\dfrac 32}\\{ \dfrac {4}{3} ×3+ \sqrt{3}\ \mathrm +c=0}\end{cases},$?解得?$\begin{cases}{b=\sqrt{3}}\\{c=1}\end{cases}$?
∴拋物線的表達(dá)式為?$y=- \frac {4}{3} x^2+sqrt{3} x+1$?
將?$x=0$?代入拋物線表達(dá)式,得?$y=1$?
∴點(diǎn)?$C(0,$??$1)$?在此拋物線上
?$(3)$?假設(shè)存在這樣的點(diǎn)?$M,$?使得四邊形?$MCAP $?的面積最大
∵?$△ACP $?的面積為定值
∴要使四邊形?$MCAP $?的面積最大,只需使?$△PCM$?的面積最大
如圖,連接?$MC、$??$MP,$?過點(diǎn)?$M$?作?$MF⊥x$?軸分別交?$CP、$??$CB$?和?$x$?軸于點(diǎn)?$E、$??$N、$??$F,$?
過點(diǎn)?$P $?作?$PH⊥x$?軸交?$CB$?于點(diǎn)?$G,$?交?$x$?軸于點(diǎn)?$H$?
?$S_{△CMP}=S_{△CME}+S_{△PME}=\frac {1}{2}\ \mathrm {ME} · CN+ \frac {1}{2}\ \mathrm {ME} · NG=\frac {1}{2}ME · CG= \frac {\sqrt 3}4ME$?
設(shè)?$M (x_0,$??$-\frac 43x^2_0+\sqrt 3x_0+1)$?
∵?$∠ECN=30°,$??$CN=x_{0}$?
∴?$EN= \frac {\sqrt 3}3x_{0}$?
∴?$EF=EN+NF=\frac {\sqrt{3}}{3} x_{0}+1$?
∴?$ME=MF-EF=- \frac {4}{3} x^2_0+ \frac {2\sqrt{3}}{3} x_{0}$?
∴?$S_{△CMP}=- \frac {\sqrt{3}}{3} x^2_0+ \frac {1}{2} x_0=-\frac {\sqrt{3}}{3}(x_{0}- \frac {\sqrt{3}}{4})^2+ \frac {\sqrt{3}}{16}$?
∵?$a=-\frac {\sqrt 3}3< 0$?
∴?$S_{△CMP} $?有最大值
∴當(dāng)?$x_{0}=\frac {\sqrt{3}}{4} $?時(shí),?$S_{△CMP} $?的最大值是?$ \frac {\sqrt{3}}{16}$?
∵?$S_{四邊形MCAP}=S_{△PCM}+S_{△ACP}=S_{△PCM}+S_{△ACO}$?
∴四邊形?$MCAP $?的面積的最大值為?$ \frac {9\sqrt{3}}{16}$?
此時(shí)點(diǎn)?$M$?的坐標(biāo)為?$ (\frac {\sqrt{3}}{4} ,$??$\frac {3}{2} ) $?
∴存在這樣的點(diǎn)?$M(\frac {\sqrt 3}4,$??$\frac 32),$?使得四邊形?$MCAP $?的面積最大,其最大值為?$ \frac {9\sqrt{3}}{16}$?