?$(1) $?證明:∵?$ D$?是?$\widehat{BC}$?的中點(diǎn)
∴?$ \widehat{CD}=\widehat{BD}$?
∵?$ DE⊥AB$?且?$AB$?為?$⊙O$?的直徑
∴?$ \widehat{BE}=\widehat{BD}$?
∴?$ \widehat{BC}=\widehat{DE}$?
∴?$ BC=DE $?
?$(2)$?連接?$OD$?
∵?$ \widehat{CD}=\widehat{BD}$?
∴?$ ∠CAB=∠DOB$?
∵?$ AB$?為?$⊙O$?的直徑
∴?$ ∠ACB=90°$?
∵?$ DE⊥AB$?
∴?$ ∠DFO=90°$?
∴?$ △ACB∽△OFD$?
∴?$ \frac {AC}{AB}=\frac {OF}{OD}$?
設(shè)?$\odot O$?的半徑為?$r,$?則?$ \frac {6}{2r}=\frac {r-2}{r}$?
解得?$r=5$?
經(jīng)檢驗(yàn),?$r=5$?是方程的根
∴?$ AB=2r=10$?
∴?$BC=\sqrt{AB^2-AC^2}=8$?
∴?$ tan ∠CAB=\frac {BC}{AC}=\frac {8}{6}=\frac {4}{3}$?
∵?$ ∠BPC=∠CAB$?
∴?$ tan ∠BPC=\frac {4}{3}$?