解:?$(1)$?∵?$PM//BD$?
∴?$△APM∽△ABD$?
∴?$\frac {AP}{AB}=\frac {PM}{BD},$?即?$\frac {AP}{AB}=\frac {1.6}{9.6}$?
∴?$AP=\frac {1}{6}AB$?
∵?$NQ//AC$?
∴?$△BNQ∽△BCA$?
∴?$\frac {BQ}{BA}=\frac {QN}{AC},$?即?$\frac {BQ}{AB}=\frac {1.6}{9.6}$?
∴?$BQ=\frac {1}{6}AB$?
而?$AP+PQ+BQ=AB$?
∴?$\frac {1}{6}AB+12+\frac {1}{6}AB=AB$?
∴?$AB=18$?
答:兩路燈的距離為?$18m。$?
?$(2)$?如圖,他在路燈?$A$?下的影子為?$BG$?
∵?$BH//AC$?
∴?$△GBH∽△GAC$?
∴?$\frac {BG}{AG}=\frac {BH}{AC},$?即?$\frac {BG}{BG+18}=\frac {1.6}{9.6}$?
解得?$BG=3.6$?
答:當他走到路燈?$B$?時,他在路燈?$A$?下的影長是?$3.6m。$?