解:?$(1)$?如圖,過點(diǎn)?$A$?作?$AD⊥BC$?于點(diǎn)?$D$?
∵?$AB+AC+BC=36\ \mathrm {cm},$??$AB=AC=13\ \mathrm {cm}$?
∴?$BC=10(\ \mathrm {cm})$?
∵?$AB=AC,$??$AD⊥CB$?
∴?$BD=CD=\frac 12BC=5(\ \mathrm {cm})$?
∴?$AD=\sqrt {AB^2-BD^2}=\sqrt {13^2-5^2}=12(\ \mathrm {cm})$?
∴?$tan∠ABC=\frac {AD}{DB}=\frac {12}{5}$?
?$(2)$?過點(diǎn)?$C$?作?$CF⊥AB$?于點(diǎn)?$F$?
∵?$S_{△ABC}=\frac {1}{2} · BC · AD=\frac {1}{2} · AB · CF$?
∴?$CF=\frac {10×12}{13}=\frac {120}{13}(\ \mathrm {cm})$?
∴?$AF=\sqrt {AC^2-CF^2}=\sqrt {13^2-(\frac {120}{13})^2}=\frac {119}{13}(\ \mathrm {cm})$?
∴?$tan∠BAC=\frac {CF}{AF}=\frac {\frac {120}{13}}{\frac {119}{13}}=\frac {120}{119}$?
即?$∠BAC$?的正切值為?$\frac {120}{119}$?