解:?$(1)$?解方程?$x^2-6x+5=0$?得?$m=1,$??$n=5,$?則?$A(-1,$??$0)、$??$B(0,$??$5)$?
把?$A(-1,$??$0)、$??$B(0,$??$5)$?代入?$y=-x^2+bx+c $?
得?$ \begin{cases}{-1-b+c=0}\\{c=5}\end{cases},$?解得?$\begin{cases}{b=4}\\{c=5}\end{cases}$?
∴拋物線對應的函數(shù)表達式為?$y=-x^2+4x+5 $?
?$(2)y=-x^2+4x+5=-(x-2)^2+9,$?則?$D(2,$??$9)$?
解方程?$-x^2+4x+5=0$?得?$x_{1}=-1,$??$x_{2}=5$?
則?$C(5,$??$0)$?
設直線?$BC$?對應的函數(shù)表達式為?$y=px+q$?
把?$C(5,$??$0)、$??$B(0,$??$5)$?代入,得?$ \begin{cases}{5p+q=0}\\{q=5}\end{cases},$?解得?$\begin{cases}{p=-1}\\{q=5}\end{cases}$?
∴直線?$BC$?對應的函數(shù)表達式為?$y=-x+5$?
如圖①,作?$DE//y$?軸交?$BC$?于點?$E,$?則點?$E$?的坐標為?$(2,$??$3)$?
∴?$S_{△BCD}=S_{△BDE}+S_{△CDE}=\frac {1}{2} ×(9-3)×5=15$?
?$(3)$?如圖②,?$PH$?交?$BC$?于點?$Q$?
設?$P(t,$??$0),$?則?$Q(t,$??$-t+5),$??$H(t,$??$-t^2+4t+5)$?
∴?$PC=5-t,$??$QP=-t+5,$??$HQ=-t^2+4t+5-(-t+5)=-t^2+5t$?
若?$S_{△PCQ}∶S_{△HQC}=2∶3,$?則?$ \frac {\frac {1}{2} (5-t)(-t+5)}{\frac {1}{2}(5-t)(-t^2+5t)}=\frac {2}{3}$?
整理,得?$2t^2-13t+15=0$?
解得?$t_{1}=\frac {3}{2},$??$t_{2}=5($?舍 去)
此時點?$P $?的坐標為?$(\frac 32,$??$0)$?
若?$S_{△PCQ}∶S_{△HQC}=3∶2,$?則?$ \frac {\frac {1}{2} (5-t)(-t+5)}{\frac {1}{2} (5-t)(-t^2+5t)}=\frac {3}{2}$?
整理,得?$3t^2-17t+10=0$?
解得?$t_{1}=\frac {2}{3},$??$t_{2}=5($?舍去)
此時點?$P $?的坐標為?$ (\frac {2}{3},$??$0)$?
綜上所述,滿足條件的點?$P $?的坐標?$(\frac {2}{3} ,$??$0) $?或?$(\frac {3}{2},$??$0 )$
?