解:?$(1)$?∵拋物線?$C_{1}∶y=a(x-3)^2+2$?
∴?$C_{1} $?的最高點(diǎn)坐標(biāo)為?$(3,$??$2)$?
∵點(diǎn)?$A(6,$??$1)$?在拋物線?$C_{1}∶y=a(x-3)^2+2$?上
∴?$1=a(6-3)^2+2,$?解得?$a=- \frac {1}{9}$?
∴拋物線?$C_{1}∶y=- \frac {1}{9} (x-3)^2+2$?
當(dāng)?$x=0$?時(shí),?$c=- \frac {1}{9} ×9+2=1 $?
?$(2)$?∵嘉嘉在?$x$?軸上方?$1\ \mathrm {m} $?的高度上,且到點(diǎn)?$A$?水平距離不超過?$1\ \mathrm {m} $?的范圍內(nèi)可以接到沙包
∴此時(shí),點(diǎn)?$A$?的坐標(biāo)范圍是?$(5,$??$1)\sim (7,$??$1)$?
當(dāng)經(jīng)過?$(5,$??$1)$?時(shí),?$1=- \frac {1}{8} ×25+ \frac {n}{8} ×5+1+1$?
解得?$n=\frac {17}{5}$?
當(dāng)經(jīng)過?$(7,$??$1)$?時(shí),?$1=- \frac {1}{8} ×49+ \frac {n}{8} ×7+1+1$?
解得?$n=\frac {41}{7}$?
∴?$\frac {17}{5} ≤n≤ \frac {41}{7}$?
∵?$n$?為整數(shù)
∴符合條件的?$n$?的整數(shù)值為?$4$?和?$5$?