解:如圖,∵ 拋物線?$y=x^2$?上有?$A、$??$B、$??$C$?三點,其橫坐標(biāo)分別為?$m、$??$m+1、$??$m+3$?
∴?$ A(m,$??$\ \mathrm {m^2}),$??$B(m+1,$??$(m+1)^2),$??$C(m+3,$??$(m+3)^2)$?
設(shè)直線?$AC$?對應(yīng)的函數(shù)表達(dá)式為?$y=kx+b$?
則有?$\begin{cases}{mk+b=\ \mathrm {m^2}}\\{(m+3)k+b=(m+3)^2}\end{cases},$?解得?$\begin{cases}{k=2m+3}\\{b=-\ \mathrm {m^2}-3m}\end{cases}$?
∴?$ y=(2\ \mathrm {m}+3)x-\ \mathrm {m^2}-3m$?
∴?$ BD$?的長為?$(2m+3)(m+1)-\ \mathrm {m^2}-3m-(m+1)^2=2$?
∴?$ S_{△ABC}=\frac {1}{2}\ \mathrm {BD} · 1+ \frac {1}{2}\ \mathrm {BD} · 2=3$?