亚洲激情+欧美激情,无码任你躁久久久久久,我的极品美女老婆,性欧美牲交在线视频,亚洲av高清在线一区二区三区

電子課本網(wǎng) 第51頁(yè)

第51頁(yè)

信息發(fā)布者:
A
?$\frac {4}{25}$?
6
1:16
解:?$(1)$?周長(zhǎng)之比等于相似比
∴?$C_{五邊形ABCDE}:$??$C_{五邊形A'B'C'D'E'}=3:$??$2$?
∵五邊形?$ABCDE = 72\ \mathrm {cm}$?
∴?$C_{五邊形A'BC'D'E'} = 48\ \mathrm {cm}$?
?$(2)$?面積之比等于相似比的平方
∴?$S _{五邊形ABCDE}:$??$S_{ 五邊形A'B'C'D'E'}=9:$??$4$?
∵?$S_{ 五邊形A'B'C'D'E' }= 120\ \mathrm {cm}2$?
∴?$S _{五邊形ABCDE} = 270\ \mathrm {cm}2$?
解:∵點(diǎn)?${A}_1、$??${A}_2,$?點(diǎn)?${B}_1、$??${B}_2,$?
點(diǎn)?${C}_1、$??${C}_2$?分別是?$△ABC$?的邊?$BC、$??$CA、$??$ AB$?的三等分點(diǎn)
∴?$\frac {B{C}_2}{AB}=\frac {B{A}_1}{BC}=\frac {1}{3}$?
∵?$∠B=∠B$?
∴?$△B{C}_2{A}_1∽△BAC$?
同理可得:?$△A{B}_2{C}_1∽△ACB、$??$△C{B}_1{A}_2∽△ CAB,$?且相似比均為?$1 : 3$?
∴?${A}_1{C}_2={B}_1{B}_2=\frac {1}{3}AC$?
?${A}_2{B}_1={C}_1{C}_2=\frac {1}{3}AB$?
?${C}_1{B}_2={A}_1{A}_2=\frac {1}{3}BC$?
∴?${C}_{六邊形}=\frac {2}{3}{C}_{△ABC}=\frac {2}{3}l$?
解:由題意可知,?$An,$??$Bn$?是?$AC、$??$BC$?中最靠近點(diǎn)?$C$?的?${2}^{n}$?等分點(diǎn)
則?${S}_{四邊形AnABBn}=\frac {3}{4}+\frac {3}{42}+\frac {3}{43}+···+\frac {3}{{4}^{n}}$?
∵?$An,$??$Bn$?是?$AC、$??$BC$?中最靠近點(diǎn)?$C$?的?${2}^{n}$?等分點(diǎn)
∴?$△ABC∽△AnBnC,$?相似比為?${2}^{n}:$??$1$?
∴?$S_{△ABC} :$??$ S_{△AnBnC}={4}^{n}:$??$1$?
∴?$S_{△AnBnC} =\frac {1}{{4}^{n}}S_{△ABC} $?
又∵?$S_{四邊形AnABB}= S_{△ABC}- S_{△AnBnC}$?
∴?$S_{四邊形AnABBn}=1-\frac {1}{{4}^{n}}$?
∴?$\frac {3}{4}+\frac {3}{42}+\frac {3}{43}+···+\frac {3}{{4}^{n}}=1-\frac {1}{{4}^{n}}$?