解???$:(1)$???二次函數(shù)???$y =a(x+2)2$???向右平移???$2$???個(gè)單位長度后為???$y = ax2$???
將點(diǎn)???$B(1 , 1)$???代入二次函數(shù)???$y= ax2,$???
得???$a=1$???
所以二次函數(shù)???$y= a(x + 2)2$???的圖像平移后所得
的圖像相應(yīng)的函數(shù)表達(dá)式為???$y=x2$???
???$(2)$???設(shè)直線???$AB$???的解析式為???$y = kx+b$???
將???$A(2, 0), B(1, 1)$???代入,得
???$\begin{cases}{0=2k+b }\\{1=k+b} \end{cases}$???
解得???$k=-1,b=2$???
所以直線???$AB$???的解析式為???$y= -x+2$???
因?yàn)槎魏瘮?shù)???$y =x2$???的圖像與直線???$y= -x+2$???交于???$B、$??????$C$???兩點(diǎn)
???$x2=-x+2$???
解得,???$x=-2,$??????$x= 1$???
所以???$C(-2 , 4)$???
所以???$S_{△OBC}=\frac {1}{2}×2×3=3$???
因?yàn)???$△OAD$???的面積等于???$△OBC$???的面積
所以???$S_{△OAD}=\frac {1}{2}×OA×{y}_{P}=\frac {1}{2}×2×{y}_{P}=3$???
所以點(diǎn)???$D$???的縱坐標(biāo)???$yp= 3$???
令???$y=3,$???得???$3=x2$???
解得,???$x=±\sqrt{3} $???
所以點(diǎn)???$D$???的坐標(biāo)為???$(\sqrt{3}, 3)$???或???$(-\sqrt{3},3)$??
?