$解:∵四邊形ABCD是矩形$
$∴AD=BC=10,CD=AB=6,∠A=∠B=∠C=90°$
$由翻折的性質(zhì),得AD=A'D=10,AE=A'E$
$∴在Rt△A'CD中,A'C=\sqrt {{A'D}^2-{CD}^2}=\sqrt {{10}^2-{6}^2}=8$
$∴A'B=BC-A'C=2$
$設(shè)AE=A'E=x,則BE=AB-AE=6-x$
$∵在Rt△A'BE中,{BE}^2+{A'B}^2={A'E}^2$
$∴{(6-x)}^2+{2}^2={x}^2$
$解得x=\frac {10}3$
$∴AE=\frac {10}3,BE=6-\frac {10}3=\frac 8 3$
$∴\frac {AE}{EB}=\frac {10}3÷\frac 8 3=\frac 5 4$
$故答案為:\frac 5 4$